
Package webs: Reproducible results from raw data
Kirill Müller
Institute for Transport Planning and Systems (IVT), ETH Zurich; kirill.mueller@ivt.baug.ethz.ch

1 Introduction

For reproducible research, it is crucial to be able
to generate all results from original raw data. By
automating the process, it is possible to easily ver-
ify reproducibility at any stage during the analysis.
Automation also allows easy recreation of the en-
tire analysis based on modified inputs or model as-
sumptions. However, rerunning the entire analy-
sis starting from raw data soon becomes too time-
consuming for interactive use. Caching intermedi-
ate results alleviates this problem but requires a
robust mechanism for cache invalidation.

R packages are a suitable container for statis-
tical analyses: They can store data, code, and doc-
umentation. Recent efforts have considerably sim-
plified the packaging process. This poster presents
an approach to conduct a statistical analysis by cre-
ating a package web – interdependent packages
where each serves a dedicated purpose. Package
dependencies define the data flow for the entire
analysis. The rpkgweb companion package tracks
which downstream packages need to be rebuilt if
a package changes, and builds independent pack-
ages in parallel. Reproducibility can be monitored
continuously with minimal effort, yet the modular
structure permits interactive work.

7 References

Bravington, M. V. (2013). mvbutils: Workspace organization, code and docu-
mentation editing, package prep and editing, etc.

Csardi, G. (2015). mason: Friendly Craftsman Who Builds Slick R Packages.
Eddelbuettel, D. (2015). pkgKitten: Create Simple Packages Which Do not Up-

set R Package Checks.
Flight, R. M. (2014). Analyses as packages. Blog: Deciphering life: One bit

at a time.
Müller, K. (2015). MakefileR: Create Makefiles using R.
Rudolph, K. (2015). modules: Modules for R.

Ushey, K., J. McPherson, J. Cheng, and J. Allaire (2015). packrat: A Depen-
dency Management System for Projects and their R Package Dependencies.

White, J. M. (2014). ProjectTemplate: Automates the creation of new statistical
analysis projects.

Wickham, H. (2011). testthat: Get started with testing. The R Journal 3, 5–10.
Wickham, H. and W. Chang (2015). devtools: Tools to Make Developing R Pack-

ages Easier.
Wickham, H., P. Danenberg, and M. Eugster (2015). roxygen2: In-Source Doc-

umentation for R.

3 Workflow

write_makefile()

Initialize

devtools, pkgKitten, mason

Add a package to the web

Use your favorite GUI/editor

Edit a package

bump("pkgname"); make()

Test and install the web

6 Related work: Comparison to ProjectTemplate

Path Purpose In a package web

config/ Configuration Create a default package from which all packages depend
data/ Raw data Create a raw data package with data in data-raw/
cache/ Munged data Create a cache package with data in data-raw/
lib/ Helper functions Add to R/ in the package where it fits best
munge/ Munging scripts Add to R/ in the corresponding cache package
src/ Analysis scripts Create an analysis package with code in R/
diagnostics/ Input validation Add a test in the raw data package to tests/testthat/
tests/ Tests Add test to tests/testthat/ in the corresponding package
doc/ Documentation Add roxygen2 inline documentation to code and data
reports/ Output Create an analysis package with a vignette in vignettes/
graphs/ Plots Part of a vignette or cached data
logs/ Log files —
profiling/ Benchmarking Store profiling data in a benchmark package

4 Example: Calibrating a survey

ControlData SurveyWithMissing

CheckMissing

ImputeMissing

PrepareSurvey

AnalyzeDesign

DefaultSettings

ValidateCalibration

CalibrateSurvey

5 Design goals and implementation

Usability Packages are “first class citizens” in the
R ecosystem. A package web is simply a
directory with several R packages. Helper
functions perform “housekeeping” tasks un-
related to the analysis.

Robustness and encapsulation Each package ac-
cesses only the data (and exported code) of
its dependencies.

Explicit data flow through package dependencies.

Reproducibility and automation The entire analy-
sis is run or updated with a single command.
When modifying a package, only dependent
packages are rebuilt. This allows simple inte-
gration with build automation systems such
as Jenkins.

Parallel processing Mutually independent pack-
ages can be built in parallel. A Makefile is
created from the package dependencies, the
make utility schedules and executes the tasks.

Interactive processing At the package level, all re-
quired data for a step are ready to use. Load-
ing the data from scratch is fast and seamless,
no need to save and reload sessions.

Scalability The modular structure allows imple-
menting complex processes. A data package
can also access and process large external
bodies of data.

Caching Semi-automatic, invalidated explicitly.

Parametrization via multiple package libraries.

Also useful for package development!
install_github(c(”MakefileR”, ”rpkgweb”), ”krlmlr”)

2 Setup

Each step is a package

• R packages contain all the code, data and text
used for the analysis

• Packages are rather small, each serves a ded-
icated purpose:

configuration

holding raw data

input validation, munging data

modeling

analysis, reporting

…

Two principal operations
1. Test

• Verify code correctness

• Create data

• Build vignettes

2. Install

• Make available downstream

Updating a package
• Work on the package

• Test

• Install

• Update downstream dependencies

+41 44 633 31 05
info@ivt.baug.ethz.ch

www.ivt.ethz.ch

